Binary Options Pro Signals Review 2020: Is It a SCAM or Not?

FXX Tool pro 1.4.2 free download Binary options signal software

FXX Tool pro 1.4.2 free download Binary options signal software submitted by tradewithbot to u/tradewithbot [link] [comments]

LCD Arduino project Display Heart Rate

LCD Arduino project brief introduction
Some time ago, I found a heart rate sensor module MAX30100 in shopping online. This module can collect blood oxygen and heart rate data of users, which is also simple and convenient to use.
According to the data, I found that there are libraries of MAX30100 in the Arduino library files. That is to say, if I use the communication between LCD Arduino and MAX30100, I can directly call the Arduino library files without having to rewrite the driver files. This is a good thing, so I bought the module of MAX30100.
I decided to use Arduino to verify the heart rate and blood oxygen collection function of MAX30100. With STONE TFT LCD screen for monitoring blood pressure.
Note: this module by default only with 3.3 V level MCU communications, because it defaults to using IIC pin pull up the resistance of 4.7 K to 1.8 V, so there is no communication with the Arduino by default, if you want to commune with the Arduino and need two 4.7 K of the IIC pin pull-up resistor connected to the VIN pin, these contents will be introduced in the back of the chapter.

Functional assignments

Before starting this project, I thought about some simple features:
• Heart rate data and blood oxygen data were collected
• Heart rate and blood oxygen data are displayed through an LCD screen
These are the only two features, but if we want to implement it, we need to do more thinking:
• What master MCU is used?
• What kind of LCD display?
As we mentioned earlier, we use Arduino for the MCU, but this is an LCD Arduino project, so we need to choose the appropriate LCD display module. I plan to use the LCD display screen with a serial port. I have a STONE STVI070WT-01 displayer here, but if Arduino needs to communicate with it, MAX3232 is needed to do the level conversion.
Then the basic electronic materials are determined as follows:
  1. Arduino Mini Pro development board
  2. MAX30100 heart rate and blood oxygen sensor module
  3. STONE STVI070WT-01 LCD serial port display module
  4. MAX3232 module

Hardware Introduction

MAX30100

The MAX30100 is an integrated pulse oximetry and heart rate monitor sensor solution. It combines two LEDs, a photodetector, optimized optics, and low-noise analog signal processing to detect pulse oximetry and heart-rate signals. The MAX30100 operates from 1.8V and 3.3V power supplies and can be powered down through software with negligible standby current, permitting the power supply to remain connected at all times.

Applications

● Wearable Devices
● Fitness Assistant Devices
● Medical Monitoring Devices

Benefits and Features

1、Complete Pulse Oximeter and Heart-Rate SensorSolution Simplifies Design
• Integrated LEDs, Photo Sensor, and high-Performance Analog Front -End
• Tiny 5.6mm x 2.8mm x 1.2mm 14-Pin OpticallyEnhanced System-in-Package
2、Ultra-Low-Power Operation Increases Battery Life for wearable Devices
• Programmable Sample Rate and LED Current for Power Savings
• Ultra-Low Shutdown Current (0.7µA, typ)
3、Advanced Functionality Improves Measurement Performance
• High SNR Provides Robust Motion Artifact Resilience
• Integrated Ambient Light Cancellation
• High Sample Rate Capability
• Fast Data Output Capability

Detection Principle


https://preview.redd.it/254ou0pq20a51.jpg?width=817&format=pjpg&auto=webp&s=2d3287e1973b328412e14c6e56f74e6f5975153e
Just press your finger against the sensor to estimate pulse oxygen saturation (SpO2) and pulse (equivalent to heartbeat).
The pulse oximeter (oximeter) is a mini-spectrometer that USES the principles of different red cell absorption spectra to analyze the oxygen saturation of the blood. This real-time and rapid measurement method is also widely used in many clinical references.
I will not introduce the MAX30100 too much, because these materials are available on the Internet. Interested friends can look up the information of this heart rate test module on the Internet, and have a deeper understanding of its detection principle.

Introduction to the STVI070WT-01 displayer

In this project, I will use the STONE STVI070WT-01 to display the heart rate and blood oxygen data.
The driver chip has been integrated inside the display screen, and there is software for users to use. Users only need to add buttons, text boxes, and other logic through the designed UI pictures, and then generate configuration files and download them into the display screen to run.
The display of STVI070WT-01 communicates with MCU through the UART RS232 signal, which means that we need to add a MAX3232 chip to convert the RS232 signal into a TTL signal so that we can communicate with Arduino MCU.

https://preview.redd.it/kyyv3hou20a51.jpg?width=749&format=pjpg&auto=webp&s=512b7285eb763e518a85d0b172dabc08b15cab6a
If you are not sure how to use the MAX3232, please refer to the following pictures:

https://preview.redd.it/5laiqsxw20a51.jpg?width=653&format=pjpg&auto=webp&s=126fb57d5171d942046277896e1552995df0ce13
If you think the level conversion is too troublesome, you can choose other types of displayers of STONE Tech, some of which can directly output uart-TTL signal.
The official website has detailed information and introduction:
https://www.stoneitech.com/
If you need video tutorials and tutorials to use, you can also find it on the official website.

https://preview.redd.it/0rkfwxk530a51.jpg?width=867&format=pjpg&auto=webp&s=32803906927fff48bb8fbc1b0a7c073cfe54c5e5

Development steps

Three steps of STONE display screen development:
• Design the display logic and button logic with STONE TOOL software, and download the design file to the display module.
• MCU communicates with the STONE LCD display module through the serial port.
• With the data obtained in step 2, the MCU does other actions.

STONE TOOL software installation

Download the latest version of the STONE TOOL software (currently TOOL2019) from the website, and install it.
After the software is installed, the following interface will be opened:

https://preview.redd.it/evuct2w630a51.jpg?width=848&format=pjpg&auto=webp&s=201d40fdb81e2c4fd229992daf15501f2cb177a0
Click the "File" button in the upper left corner to create a new project, which we will discuss later.

LCD Arduino

Arduino is an open-source electronic prototype platform that is easy to use and easy to use. It includes the hardware part (various development boards that conform to the Arduino specification) and the software part (Arduino IDE and related development kits).
The hardware part (or development board) consists of a microcontroller (MCU), Flash memory (Flash), and a set of universal input/output interfaces (GPIO), which you can think of as a microcomputer motherboard.
The software part is mainly composed of Arduino IDE on PC, related board-level support package (BSP) and rich third-party function library. With the Arduino IDE, you can easily download the BSP associated with your development board and the libraries you need to write your programs.
Arduino is an open-source platform. So far, there have been many models and many derived controllers, including Arduino Uno, Arduino Nano, Arduino Yun and so on. In addition, the Arduino IDE now not only supports the Arduino series development boards but also adds support for popular development boards such as Intel Galileo and NodeMCU by introducing BSP.
Arduino senses the environment through a variety of sensors, controlling lights, motors and other devices to feedback and influence the environment. The microcontroller on the board can be programmed with an Arduino programming language, compiled into binaries, and burned into the microcontroller. Programming for Arduino is implemented with the Arduino programming language (based on Wiring) and the Arduino development environment (based on Processing). Arduino-based projects can contain Arduino only, as well as Arduino and other software running on PC, and they communicate with each other (such as Flash, Processing, MaxMSP).

HMI for Arduino serial display TFT LCD project development environment

The Arduino development environment is the Arduino IDE, which can be downloaded from the Internet.
Log into the official website of Arduino and download the software
https://www.arduino.cc/en/Main/Software?setlang=cn
After installing the Arduino IDE, the following interface will appear when you open the software:

https://preview.redd.it/2ajmkke830a51.jpg?width=567&format=pjpg&auto=webp&s=56dc9dd01c98b231c782ef94d24a9f620c4897b3
The Arduino IDE creates two functions by default: the setup function and the loop function.
There are many Arduino introductions on the Internet. If you don't understand something, you can go to the Internet to find it.

LCD Arduino Project implementation process

hardware connection

To ensure that the next step in writing code goes smoothly, we must first determine the reliability of the hardware connection.
Only four pieces of hardware were used in this project:
  1. Arduino Mini pro-development board
  2. STONE STVI070WT-01 TFT-LCD display screen
  3. MAX30100 heart rate and blood oxygen sensor
  4. MAX3232 (rs232-> TTL)
The Arduino Mini Pro development board and STVI070WT-01 TFT-LCD display screen are connected through UART, which requires level conversion through MAX3232, and then the Arduino Mini Pro development board and MAX30100 module are connected through IIC interface. After thinking clearly, we can draw the following wiring picture:

https://preview.redd.it/w2e5c9ha30a51.jpg?width=769&format=pjpg&auto=webp&s=95129db838d6c358e986c88a4d1348f4783cd0ab
https://preview.redd.it/eom4wiia30a51.jpg?width=1091&format=pjpg&auto=webp&s=ff56c3afaf063d7785a5b85ba283532be0dd896e
Make sure there are no errors in the hardware connection and proceed to the next step.

STONE TFT LCD user interface design

First of all, we need to design a UI display image, which can be designed by PhotoShop or other image design tools. After designing the UI display image, save the image in JPG format.
Open the software STONE TOOL 2019 and create a new project:

https://preview.redd.it/sqjii2mc30a51.jpg?width=1004&format=pjpg&auto=webp&s=12f0a87d6c2ca8decaff241d5a0b50a3a1aece89
https://preview.redd.it/4ta8cdlc30a51.jpg?width=871&format=pjpg&auto=webp&s=b31ac5e612a2c809e29f63974a04ba25bff83788
Remove the image that was loaded by default in the new project, and add the UI image that we designed.
Add the text display component, design the display digit and decimal point, get the storage location of the text display component in the displayer.
The effect is as follows:

https://preview.redd.it/2mfqapoe30a51.jpg?width=1335&format=pjpg&auto=webp&s=aacfa0fde88defacd127ea9d9d27ab006ab618dd
Text display component address:
• Connection sta : 0x0008
• Heart rate : 0x0001
• Blood oxygen : 0x0005
The main contents of the UI interface are as follows:
• Connection status
• Heart rate display
• Blood oxygen showed

Generate configuration file

Once the UI design is complete, the configuration file can be generated and downloaded to the STVI070WT-01 displaye.

First, perform step 1, then insert the USB flash drive into the computer, and the disk symbol will be displayed. Then click "Download to u-disk" to Download the configuration file to the USB flash drive, and then insert the USB flash drive into STVI070WT-01 to complete the upgrade.

MAX30100

MAX30100 communicates via IIC. Its working principle is that the ADC value of heart rate can be obtained through infrared led irradiation. The MAX30100 register can be divided into five categories: state register, FIFO, control register, temperature register, and ID register. The temperature register reads the temperature value of the chip to correct the deviation caused by the temperature. The ID register can read the chip's ID number.

https://preview.redd.it/221fq8vg30a51.jpg?width=848&format=pjpg&auto=webp&s=43e93284ac35cf1944a77d79ff9a2f662e540c7e

MAX30100 is connected with the Arduino Mini Pro development board through the IIC communication interface. Because there are ready-made MAX30100 library files in the Arduino IDE, we can read the heart rate and blood oxygen data without studying the registers of MAX30100.
For those who are interested in exploring the MAX30100 register, see the MAX30100 Datasheet.

Modify the MAX30100 IIC pull-up resistor

It should be noted that the 4.7k pull-up resistance of the IIC pin of MAX30100 module is connected to 1.8v, which is not a problem in theory. However, the communication logic level of the Arduino IIC pin is 5V, so it cannot communicate with Arduino without changing the hardware of the MAX30100 module.Direct communication is possible if the MCU is STM32 or another 3.3v logic level MCU.
Therefore, the following changes need to be made:

https://preview.redd.it/jti57usl30a51.jpg?width=521&format=pjpg&auto=webp&s=c56b1b1a8294d60a8f9e931e411305f68c5c5559
Remove the three 4.7k resistors marked in the picture with an electric soldering iron. Then weld two resistors of 4.7k at the pins of SDA and SCL to VIN, so that we can communicate with Arduino.

Arduino serial display LCD

Open the Arduino IDE and find the following buttons:

https://preview.redd.it/990d3bdp30a51.jpg?width=853&format=pjpg&auto=webp&s=24136c385601b69d5afc67842358b102373277ef
Search for "MAX30100" to find two libraries for MAX30100, then click download and install.

https://preview.redd.it/4n167pbv30a51.jpg?width=933&format=pjpg&auto=webp&s=cef50833667bae3f30ac94f5a48b43795b779845
After the installation, you can find the Demo of MAX30100 in the LIB library folder of LCD Arduino:

https://preview.redd.it/rn05xgvw30a51.jpg?width=911&format=pjpg&auto=webp&s=3709bc7c5be36ebdd14c01cb0b7c1933953425b0
Double-click the file to open it.

https://preview.redd.it/q6fqylky30a51.jpg?width=819&format=pjpg&auto=webp&s=8073917be374a72bef2977b4b11ccb2b56fa944e
This Demo can be directly tested. If the hardware connection is ok, you can download the code compilation into the Arduino development board and see the data of MAX30100 in the serial debugging tool.
The complete code is as follows: /*
Arduino-MAX30100 oximetry / heart rate integrated sensor library
Copyright (C) 2016 OXullo Intersecans
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "MAX30100_PulseOximeter.h"
#define REPORTING_PERIOD_MS 1000
// PulseOximeter is the higher level interface to the sensor
// it offers:
// * beat detection reporting
// * heart rate calculation
// * SpO2 (oxidation level) calculation
PulseOximeter pox;
uint32_t tsLastReport = 0;
// Callback (registered below) fired when a pulse is detected
void onBeatDetected()
{
Serial.println("Beat!");
}
void setup()
{
Serial.begin(115200);
Serial.print("Initializing pulse oximeter..");
// Initialize the PulseOximeter instance
// Failures are generally due to an improper I2C wiring, missing power supply
// or wrong target chip
if (!pox.begin()) {
Serial.println("FAILED");
for(;;);
} else {
Serial.println("SUCCESS");
}
// The default current for the IR LED is 50mA and it could be changed
// by uncommenting the following line. Check MAX30100_Registers.h for all the
// available options.
// pox.setIRLedCurrent(MAX30100_LED_CURR_7_6MA);
// Register a callback for the beat detection
pox.setOnBeatDetectedCallback(onBeatDetected);
}
void loop()
{
// Make sure to call update as fast as possible
pox.update();
// Asynchronously dump heart rate and oxidation levels to the serial
// For both, a value of 0 means "invalid"
if (millis() - tsLastReport > REPORTING_PERIOD_MS) {
Serial.print("Heart rate:");
Serial.print(pox.getHeartRate());
Serial.print("bpm / SpO2:");
Serial.print(pox.getSpO2());
Serial.println("%");
tsLastReport = millis();
}
}
📷
This code is very simple, I believe you can understand it at a glance. I have to say that the modular programming of Arduino is very convenient, and I don't even need to understand how the driver code of Uart and IIC is implemented.
Of course, the above code is an official Demo, and I still need to make some changes to display the data to STONE's displayer.

Display data to the STONE display through Arduino LCD

First, we need to get the address of the component that displays the heart rate and blood oxygen data in STONE's displayer:
In my project, the address is as follows:
Heart rate display component address: 0x0001
Address of blood oxygen display module: 0x0005
Sensor connection status address: 0x0008
If you need to change the display content in the corresponding space, you can change the display content by sending data to the corresponding address of the display screen through the serial port of Arduino.
The modified code is as follows:
/*
Arduino-MAX30100 oximetry / heart rate integrated sensor library
Copyright (C) 2016 OXullo Intersecans
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "MAX30100_PulseOximeter.h"
#define REPORTING_PERIOD_MS 1000
#define Heart_dis_addr 0x01
#define Sop2_dis_addr 0x05
#define connect_sta_addr 0x08
unsigned char heart_rate_send[8]= {0xA5, 0x5A, 0x05, 0x82,\
0x00, Heart_dis_addr, 0x00, 0x00};
unsigned char Sop2_send[8]= {0xA5, 0x5A, 0x05, 0x82, 0x00, \
Sop2_dis_addr, 0x00, 0x00};
unsigned char connect_sta_send[8]={0xA5, 0x5A, 0x05, 0x82, 0x00, \
connect_sta_addr,0x00, 0x00};
// PulseOximeter is the higher level interface to the sensor
// it offers:
// * beat detection reporting
// * heart rate calculation
// * SpO2 (oxidation level) calculation
PulseOximeter pox;
uint32_t tsLastReport = 0;
// Callback (registered below) fired when a pulse is detected
void onBeatDetected()
{
// Serial.println("Beat!");
}
void setup()
{
Serial.begin(115200);
// Serial.print("Initializing pulse oximeter..");
// Initialize the PulseOximeter instance
// Failures are generally due to an improper I2C wiring, missing power supply
// or wrong target chip
if (!pox.begin()) {
// Serial.println("FAILED");
// connect_sta_send[7]=0x00;
// Serial.write(connect_sta_send,8);
for(;;);
} else {
connect_sta_send[7]=0x01;
Serial.write(connect_sta_send,8);
// Serial.println("SUCCESS");
}
// The default current for the IR LED is 50mA and it could be changed
// by uncommenting the following line. Check MAX30100_Registers.h for all the
// available options.
pox.setIRLedCurrent(MAX30100_LED_CURR_7_6MA);
// Register a callback for the beat detection
pox.setOnBeatDetectedCallback(onBeatDetected);
}
void loop()
{
// Make sure to call update as fast as possible
pox.update();
// Asynchronously dump heart rate and oxidation levels to the serial
// For both, a value of 0 means "invalid"
if (millis() - tsLastReport > REPORTING_PERIOD_MS) {
// Serial.print("Heart rate:");
// Serial.print(pox.getHeartRate());
// Serial.print("bpm / SpO2:");
// Serial.print(pox.getSpO2());
// Serial.println("%");
heart_rate_send[7]=(uint32_t)pox.getHeartRate();
Serial.write(heart_rate_send,8);
Sop2_send[7]=pox.getSpO2();
Serial.write(Sop2_send,8);
tsLastReport = millis();
}
}
Compile the code, download it to the Arduino serial display LCD development board, and you're ready to start testing.
We can see that when the fingers leave the MAX30100, the heart rate and blood oxygen display 0. Place your finger on the MAX30100 collector to see your heart rate and blood oxygen levels in real-time.

LCD Arduino project effect can be seen in the following picture:


https://preview.redd.it/k9u0jtg040a51.jpg?width=510&format=pjpg&auto=webp&s=1e9994109a072807a802eb1179b874f727aeff5a
https://preview.redd.it/0ow2lfg040a51.jpg?width=576&format=pjpg&auto=webp&s=b0f5f6ac073894c8b0c033549fce79fac1c90bc3
submitted by Tamesliu to arduino [link] [comments]

100% SUPER Win Robo Software🖖🖖Almost Free

No scam No referral No withdrawal fees 👇👇👇👇👇👇👇👇👇 ITM✌✌ITM✌✌ ITM👉👉100% SUPER Win Robo Software🖖🖖Almost Free
*Message Whatsapp- +8801846650807
👉IQ OPTION, OLYMPTRADE, BINOMO, POCKET OPTION, IRON TRADE👈 ★SUPER EASY WINNING STRATEGY WITH SUPER ROBOT SIGNAL PRO SOFTWARE.. 🖐PRICE ONLY 100$ ( WORTH 4444$, GET PROOF)✌✌
★Winning Ratio 80%-85% ★EASY TO UNDERSTAND AND USE. ★USE ON ANY BINARY OR FOREX BROKER ★1-5 MINUTE TRADE
★Video And Software Will Be Instantly Sent U After Payment Confirmation. ★We Support- BITCOIN, PAYPAL, PAYONEER, BANK
Only Serious Buyers Inbox Whatsapp,Who Love To Build Trust & Long-term relationship🤜🤝🤛
*Message Whatsapp- +8801846650807
Note: No negotiation allowed. Confirm Payment, Get the, Outstanding Tools And Ensure Your Lifetime Binary Profits.🤑🤑🤑
Spammer Will Be Blocked Immediately. 🤬
THANKS And HAPPY TRADING!!👍👍👍
*Message Whatsapp- +8801846650807
I promise to help everyone earn .I need only interested people If interested inbox me. (Whatsapp -: +8801846650807 ) THE FIRST 100 PEOPLE TO COMMENT (CASH) WILL RECEIVE THEIR 200,000$ TRUST ME IT 100% REAL. AND IT START
NOW, OFFER 1 HOUR!!! I am giving $900,000 to the first 20 people to drop me a message on WhatsApp just 20
submitted by BangalTigers to u/BangalTigers [link] [comments]

Comprehensive Guide for getting into Home Recording

I'm going to borrow from a few sources and do my best to make this cohesive, but this question comes up a lot. I thought we had a comprehensive guide, but it doesn't appear so. In the absence of this, I feel that a lot of you could use a simple place to go for some basics on recording. There are a couple of great resources online already on some drumming forums, but I don't think they will be around forever.
Some background on myself - I have been drumming a long time. During that time, home recording has gone from using a cassette deck to having a full blown studio at your finger tips. The technology in the last 15 years has gotten so good it really is incredible. When I was trying to decide what I wanted to do with my life, I decided to go to school for audio engineering in a world-class studio. During this time I had access to the studio and was able to assist with engineering on several projects. This was awesome, and I came out with a working knowledge of SIGNAL CHAIN, how audio works in the digital realm, how microphones work, studio design, etc. Can I answer your questions? Yes.

First up: Signal Chain! This is the basic building block of recording. Ever seen a "I have this plugged in but am getting no sound!" thread? Yeah, signal chain.

A "Signal Chain" is the path your audio follows, from sound source, to the recording device, and back out of your monitors (speakers to you normies).
A typical complete signal chain might go something like this:
1] instrument/sound source 2] Microphone/TransducePickup 3] Cable 4] Mic Preamp/DI Box 5] Analog-to-Digital Converter 6] Digital transmission medium[digital data get recoded for usb or FW transfer] 7] Digital recording Device 8] DSP and Digital summing/playback engine 9] Digital-to-Analog Converter 10] Analog output stage[line outputs and output gain/volume control] 11] Monitors/Playback device[headphones/other transducers]
Important Terms, Definitions, and explanations (this will be where the "core" information is):
1] AD Conversion: the process by which the electrical signal is "converted" to a stream of digital code[binary, 1 and 0]. This is accomplished, basically, by taking digital pictures of the audio...and this is known as the "sampling rate/frequency" The number of "pictures" determines the frequency. So the CD standard of 44.1k is 44,100 "pictures" per second of digital code that represents the electrical "wave" of audio. It should be noted that in order to reproduce a frequency accuratly, the sampling rate must be TWICE that of the desired frequency (See: Nyquist-Shannon Theorem). So, a 44.1 digital audio device can, in fact, only record frequencies as high as 22.05khz, and in the real world, the actual upper frequency limit is lower, because the AD device employs a LOW-PASS filter to protect the circuitry from distortion and digital errors called "ALIASING." Confused yet? Don't worry, there's more... We haven't even talked about Bit depth! There are 2 settings for recording digitally: Sample Rate and Bit Depth. Sample rate, as stated above, determines the frequencies captured, however bit depth is used to get a better picture of the sample. Higher bit depth = more accurate sound wave representation. More on this here. Generally speaking, I record at 92KHz/24 bit depth. This makes huge files, but gets really accurate audio. Why does it make huge files? Well, if you are sampling 92,000 times per second, you are taking each sample and applying 24 bits to that, multiply it out and you get 92,000*24 = 2,208,000 bits per second or roughly 0.26MB per second for ONE TRACK. If that track is 5 minutes long, that is a file that is 78.96MB in size. Now lets say you used 8 inputs on an interface, that is, in total, 631.7MB of data. Wow, that escalates quick, right? There is something else to note as well here: Your CPU has to calculate this. So the amount of calculations it needs to perform for this same scenario is ~17.7 million calculations PER SECOND. This is why CPU speed and RAM is super important when recording digitally.
2] DA conversion: the process by which the digital code (the computer representation of a sound wave) is transformed back into electrcal energy in the proper shape. In a oversimplified explanation, the code is measured and the output of the convertor reflects the value of the code by changing voltage. Think of a sound wave on a grid: Frequency would represent the X axis (the horizontal axis)... but there is a vertical axis too. This is called AMPLITUDE or how much energy the wave is generating. People refer to this as how 'loud' a sound is, but that's not entirely correct. You can have a high amplitude wave that is played at a quiet volume. It's important to distinguish the two. How loud a sound is can be controlled by the volume on a speaker or transducer. But that has no impact on how much amplitude the sound wave has in the digital space or "in the wire" on its way to the transducer. So don't get hung up on how "loud" a waveform is, it is how much amplitude it has when talking about it "in the box" or before it gets to the speakeheadphone/whatever.
3] Cables: An often overlooked expense and tool, cables can in fact, make or break your recording. The multitudes of types of cable are determined by the connector, the gauge(thickness), shielding, type of conductor, etc... Just some bullet points on cables:
- Always get the highest quality cabling you can afford. Low quality cables often employ shielding that doesnt efectively protect against AC hums(60 cycle hum), RF interference (causing your cable to act as a gigantic AM/CB radio antenna), or grounding noise introduced by other components in your system. - The way cables are coiled and treated can determine their lifespan and effectiveness. A kinked cable can mean a broken shield, again, causing noise problems. - The standard in the USA for wiring an XLR(standard microphone) cable is: PIN 1= Cold/-, PIN 2= Hot/+, PIN 3=Ground/shield. Pin 3 carries phantom power, so it is important that the shield of your cables be intact and in good condition if you want to use your mic cables without any problems. - Cables for LINE LEVEL and HI-Z(instrument level) gear are not the same! - Line Level Gear, weather professional or consumer, should generally be used with balanced cables (on a 1/4" connector, it will have 3 sections and is commonly known as TRS -or- TipRingSleeve). A balanced 1/4" is essentially the same as a microphone cable, and in fact, most Professional gear with balanced line inputs and outputs will have XLR connectors instead of 1/4" connectors. - Hi-Z cable for instruments (guitars, basses, keyboards, or anything with a pickup) is UNBALANCED, and should be so. The introduction of a balanced cable can cause electricity to be sent backwards into a guitar and shock the guitar player. You may want this to happen, but your gear doesn't. There is some danger here as well, especially on stage, where the voltage CAN BE LETHAL. When running a guitabass/keyboard "Direct" into your interface, soundcard, or recording device, you should ALWAYS use a "DIRECT BOX", which uses a transformer to isolate and balance the the signal or you can use any input on the interface designated as a "Instrument" or "Hi-Z" input. It also changes some electrical properties, resulting in a LINE LEVEL output (it amplifies it from instrument level to line level).
4] Digital Data Transmissions: This includes S/PDIF, AES/EBU, ADAT, MADI. I'm gonna give a brief overview of this stuff, since its unlikely that alot of you will ever really have to think about it: - SDPIF= Sony Phillips Digital Interface Format. using RCA or TOSLINK connectors, this is a digital protocol that carries 3 streams of information. Digital audio Left, Digital Audio Right, and CLOCK. SPDIF generally supports 48khz/20bit information, though some modern devices can support up to 24bits, and up to 88.2khz. SPDIF is the consumer format of AES/EBU - AES/EBU= Audio Engineering Society/European Breadcasters Union Digital protocol uses a special type of cable often terminated with XLR connectors to transmit 2 channels of Digital Audio. AES/EBU is found mostly on expensive professional digital gear. - ADAT= the Alesis Digital Audio Tape was introduced in 1991, and was the first casette based system capable of recording 8 channels of digital audio onto a single cartridge(a SUPER-VHS tape, same one used by high quality VCR's). Enough of the history, its not so important because we are talking about ADAT-LIGHTPIPE Protocol, which is a digital transmission protocol that uses fiberoptic cable and devices to send up to 8 channels of digital audio simultaneously and in sync. ADAT-Lightpipe supports up to 48khz sample rates. This is how people expand the number of inputs by chaining interfaces. - MADI is something you will almost never encounter. It is a protocol that allows up to 64 channels of digital audio to be transmitted over a single cable that is terminated by BNC connectors. Im just telling you it exists so in case you ever encounter a digital snake that doesnt use Gigabit Ethernet, you will know whats going on.
digital transmission specs: SPDIF -> clock->2Ch->RCA cable(consumer) ADAT-Lightpipe->clock->8Ch->Toslink(semi-pro) SPDIF-OPTICAL->clock->2Ch->Toslink(consumer) AES/EBU->clock->2Ch->XLR(Pro) TDIF->clock->8Ch->DSub(Semi-Pro) ______________ MADI->no clock->64Ch->BNC{rare except in large scale pofessional apps} SDIF-II->no clock->24Ch->DSub{rare!} AES/EBU-13->no clock->24Ch->DSub
5] MICROPHONES: There are many types of microphones, and several names for each type. The type of microphone doesn't equate to the polar pattern of the microphone. There are a few common polar patterns in microphones, but there are also several more that are less common. These are the main types- Omni-Directional, Figure 8 (bi-directional), Cardioid, Super Cardioid, Hyper Cardioid, Shotgun. Some light reading.... Now for the types of microphones: - Dynamic Microphones utilize polarized magnets to convert acoustical energy into electrical energy. there are 2 types of dynamic microphones: 1) Moving Coil microphones are the most common type of microphone made. They are also durable, and capable of handling VERY HIGH SPL (sound pressure levels). 2) Ribbon microphones are rare except in professional recording studios. Ribbon microphones are also incredibly fragile. NEVER EVER USE PHANTOM POWER WITH A RIBBON MICROPHONE, IT WILL DIE (unless it specifically requires it, but I've only ever seen this on one Ribbon microphone ever). Sometimes it might even smoke or shoot out a few sparks; applying phantom power to a Ribbon Microphone will literally cause the ribbon, which is normally made from Aluminum, to MELT. Also, windblasts and plosives can rip the ribbon, so these microphones are not suitible for things like horns, woodwinds, vocals, kick drums, or anything that "pushes air." There have been some advances in Ribbon microphones and they are getting to be more common, but they are still super fragile and you have to READ THE MANUAL CAREFULLY to avoid a $1k+ mistake. - CondenseCapacitor Microphones use an electrostatic charge to convert acoustical energy into electrical energy. The movement of the diaphragm(often metal coated mylar) toward a ceramic "backplate" causes a fluctuation in the charge, which is then amplified inside the microphone and output as an electrical signal. Condenser microphones usually use phantom power to charge the capacitors' and backplate in order to maintain the electrostatic charge. There are several types of condenser microphones: 1) Tube Condenser Microphones: historically, this type of microphone has been used in studios since the 1940s, and has been refined and redesigned hundreds, if not thousands of times. Some of the "best sounding" and most desired microphones EVER MADE are Tube Condenser microphones from the 50's and 60's. These vintage microphones, in good condition, with the original TUBES can sell for hundreds of thousands of dollars. Tube mics are known for sounding "full", "warm", and having a particular character, depending on the exact microphone. No 2 tubes mics, even of the same model, will sound the same. Similar, but not the same. Tube mics have their own power supplies, which are not interchangeable to different models. Each tube mic is a different design, and therefore, has different power requirements. 2) FET Condenser microphones: FET stands for "Field Effect Transistor" and the technology allowed condenser microphones to be miniturized. Take for example, the SHURE beta98s/d, which is a minicondenser microphone. FET technology is generally more transparant than tube technology, but can sometimes sound "harsh" or "sterile". 3) Electret Condenser Microphones are a condenser microphone that has a permanent charge, and therefore, does not require phantom power; however, the charge is not truly permanent, and these mics often use AA or 9V batteries, either inside the mic, or on a beltpack. These are less common.
Other important things to know about microphones:
- Pads, Rolloffs, etc: Some mics have switches or rotating collars that notate certain things. Most commonly, high pass filters/lowcut filters, or attenuation pads. 1) A HP/LC Filter does exactly what you might think: Removes low frequency content from the signal at a set frequency and slope. Some microphones allow you to switch the rolloff frequency. Common rolloff frequencies are 75hz, 80hz, 100hz, 120hz, 125hz, and 250hz. 2) A pad in this example is a switch that lowers the output of the microphone directly after the capsule to prevent overloading the input of a microphone preamplifier. You might be asking: How is that possible? Some microphones put out a VERY HIGH SIGNAL LEVEL, sometimes about line level(-10/+4dbu), mic level is generally accepted to start at -75dbu and continues increasing until it becomes line level in voltage. It should be noted that linel level signals are normally of a different impedance than mic level signals, which is determined by the gear. An example for this would be: I mic the top of a snare drum with a large diaphragm condenser mic (solid state mic, not tube) that is capable of handling very high SPLs (sound pressure levels). When the snare drum is played, the input of the mic preamp clips (distorts), even with the gain turned all the way down. To combat this, I would use a pad with enough attenuation to lower the signal into the proper range of input (-60db to -40 db). In general, it is accepted to use a pad with only as much attentuation as you need, plus a small margin of error for extra “headroom”. What this means is that if you use a 20db pad where you only need a 10db pad, you will then have to add an additional 10db of gain to achieve a desireable signal level. This can cause problems, as not all pads sound good, or even transparent, and can color and affect your signal in sometimes unwanted ways that are best left unamplified. - Other mic tips/info: 1) when recording vocals, you should always use a popfilter. A pop filter mounted on a gooseneck is generally more effective than a windscreen made of foam that slips over the microphone. The foam type often kill the highfrequency response, alter the polar pattern, and can introduce non-linear polarity problems(part of the frequency spectrum will be out of phase.) If you don't have a pop filter or don't want to spend on one, buy or obtain a hoop of some kind, buy some cheap panty-hose and stretch it over the hoop to build your own pop filter. 2) Terms Related to mics: - Plosives: “B”, “D”, “F”, “G”, “J”, “P”, “T” hard consonants and other vocal sounds that cause windblasts. These are responsible for a low frequency pop that can severly distort the diaphragm of the microphone, or cause a strange inconsistency of tonality by causing a short term proximity effect.
- Proximity effect: An exponential increase in low frequency response causes by having a microphone excessivly close to a sound. This can be cause by either the force of the air moving actually causes the microphone’s diaphragm to move and sometimes distort, usually on vocalists or buy the buildup of low frequency soundwaves due to off-axis cancellation ports. You cannot get proximity effect on an omnidirectional microphone. With some practice, you can use proximity effect to your advantage, or as an effect. For example, if you are recording someone whispering and it sounds thin or weak and irritating due to the intenese high mid and high frequency content, get the person very close to a cardioid microphone with two popfilters, back to back approx 1/2”-1” away from the mic and set your gain carefully, and you can achieve a very intimite recording of whispering. In a different scenario, you can place a mic inside of a kick drum between 1”-3” away from the inner shell, angled up and at the point of impact, and towards the floor tom. This usually captures a huge low end, and the sympathetic vibration of the floor tom on the kick drum hits, but retains a clarity of attack without being distorted by the SPL of the drum and without capturing unplesant low-mid resonation of the kick drum head and shell that is common directly in the middle of the shell.
6) Wave Envelope: The envelope is the graphical representation of a sound wave commonly found in a DAW. There are 4 parts to this: Attack, Decay, Sustain, Release: 1) Attack is how quickly the sound reaches its peak amplitude; 2) Decay is the time it takes to reach the sustain level; 3) Sustain how long a sound remains at a certain level (think of striking a tom, the initial smack is attack, then it decays to the resonance of the tom, how long it resonates is the sustain); 4) Release is the amount of time before the sustain stops. This is particularly important as these are also the settings on a common piece of gear called a Compressor! Understanding the envelope of a sound is key to learning how to maniuplate it.
7) Phase Cancellation: This is one of the most important concepts in home recording, especially when looking at drums. I'm putting it in this section because it matters so much. Phase Cancellation is what occurs when the same frequencies occur at different times. To put it simply, frequency amplitudes are additive - meaning if you have 2 sound waves of the same frequency, one amplitude is +4 and the other is +2, the way we percieve sound is that the frequency is +6. But a sound wave has a positive and negative amplitude as it travels (like a wave in the ocean with a peak and a swell). If the frequency then has two sources and it is 180 degrees out of phase, that means one wave is at +4 while the other is at -4. This sums to 0, or cancels out the wave. Effectively, you would hear silence. This is why micing techniques are so important, but we'll get into that later. I wanted this term at the top, and will likely mention it again.

Next we can look at the different types of options to actually record your sound!

1) Handheld/All in one/Field Recorders: I don't know if portable cassette tape recorders are still around, but that's an example of one. These are (or used to) be very popular with journalists because they were pretty decent at capturing speech. They do not fare too well with music though. Not too long ago, we saw the emergence of the digital field recorder. These are really nifty little devices. They come in many shapes, sizes and colors, and can be very affordable. They run on batteries, and have built-in microphones, and record digitally onto SD cards or harddiscs. The more simple ones have a pair of built-in condenser microphones, which may or may not be adjustable, and record onto an SD-card. They start around $99 (or less if you don't mind buying refurbished). You turn it on, record, connect the device itself or the SD card to your computer, transfer the file(s) and there is your recording! An entry-level example is the Tascam DR-05. It costs $99. It has two built in omni-directional mics, comes with a 2GB microSD card and runs on two AA batteries. It can record in different formats, the highest being 24-bit 96KHz Broadcast WAV, which is higher than DVD quality! You can also choose to record as an MP3 (32-320kbps) if you need to save space on the SD card or if you're simply going to record a speech/conference or upload it on the web later on. It's got a headphone jack and even small built-in speakers. It can be mounted onto a tripod. And it's about the size of a cell phone. The next step up (although there are of course many options that are price and feature-wise inbetween this one and the last) is a beefier device like the Zoom H4n. It's got all the same features as the Tascam DR-05 and more! It has two adjustable built-in cardioid condenser mics in an XY configuration (you can adjust the angle from a 90-120 degree spread). On the bottom of the device, there are two XLR inputs with preamps. With those, you can expand your recording possibilities with two external microphones. The preamps can send phantom power, so you can even use very nice studio mics. All 4 channels will be recorded independantly, so you can pop them onto your computer later and mix them with software. This device can also act as a USB interface, so instead of just using it as a field recorder, you can connect it directly to your computer or to a DSLR camera for HD filming. My new recommendation for this category is actually the Yamaha EAD10. It really is the best all-in-one solution for anyone that wants to record their kit audio with a great sound. It sports a kick drum trigger (mounts to the rim of the kick) with an x-y pattern set of microphones to pick up the rest of the kit sound. It also has on-board effects, lots of software integration options and smart features through its app. It really is a great solution for anyone who wants to record without reading this guide.
The TL;DR of this guide is - if it seems like too much, buy the Yamaha EAD10 as a simple but effective recording solution for your kit.

2) USB Microphones: There are actually mics that you an plug in directly to your computer via USB. The mics themselves are their own audio interfaces. These mics come in many shapes and sizes, and offer affordable solutions for basic home recording. You can record using a DAW or even something simple like the stock windows sound recorder program that's in the acessories folder of my Windows operating system. The Blue Snowflake is very affordable at $59. It can stand alone or you can attach it to your laptop or your flat screen monitor. It can record up to 44.1kHz, 16-bit WAV audio, which is CD quality. It's a condenser mic with a directional cardioid pickup pattern and has a full frequency response - from 35Hz-20kHz. It probably won't blow you away, but it's a big departure from your average built-in laptop, webcam, headset or desktop microphone. The Audio Technica AT2020 USB is a USB version of their popular AT2020 condenser microphone. At $100 it costs a little more than the regular version. The AT2020 is one of the finest mics in its price range. It's got a very clear sound and it can handle loud volumes. Other companies like Shure and Samson also offer USB versions of some of their studio mics. The AT2020 USB also records up to CD-quality audio and comes with a little desktop tripod. The MXL USB.009 mic is an all-out USB microphone. It features a 1 inch large-diaphragm condenser capsule and can record up to 24-bit 96kHz WAV audio. You can plug your headphones right into the mic (remember, it is its own audio interface) so you can monitor your recordings with no latency, as opposed to doing so with your computer. Switches on the mic control the gain and can blend the mic channel with playback audio. Cost: $399. If you already have a mic, or you don't want to be stuck with just a USB mic, you can purcase a USB converter for your existing microphone. Here is a great review of four of them.
3) Audio Recording Interfaces: You've done some reading up on this stuff... now you are lost. Welcome to the wide, wide world of Audio Interfaces. These come in all different shapes and sizes, features, sampling rates, bit depths, inputs, outputs, you name it. Welcome to the ocean, let's try to help you find land.
- An audio interface, as far as your computer is concerned, is an external sound card. It has audio inputs, such as a microphone preamp and outputs which connect to other audio devices or to headphones or speakers. The modern day recording "rig" is based around a computer, and to get the sound onto your computer, an interface is necessary. All computers have a sound card of some sort, but these have very low quality A/D Converters (analog to digital) and were not designed with any kind of sophisticated audio recording in mind, so for us they are useless and a dedicated audio interface must come into play.
- There are hundreds of interfaces out there. Most commonly they connect to a computer via USB or Firewire. There are also PCI and PCI Express-based interfaces for desktop computers. The most simple interfaces can record one channel via USB, while others can record up to 30 via firewire! All of the connection types into the computer have their advantages and drawbacks. The chances are, you are looking at USB, Firewire, or Thunderbolt. As far as speeds, most interfaces are in the same realm as far as speed is concerned but thunderbolt is a faster data transfer rate. There are some differences in terms of CPU load. Conflict handling (when packages collide) is handled differently. USB sends conflict resolution to the CPU, Firewire handles it internally, Thunderbolt, from what I could find, sends it to the CPU as well. For most applications, none of them are going to be superior from a home-recording standpoint. When you get up to 16/24 channels in/out simultaneously, it's going to matter a lot more.
- There are a number of things to consider when choosing an audio interface. First off your budget, number of channels you'd like to be able to record simultaneously, your monitoring system, your computer and operating system and your applications. Regarding budget, you have to get real. $500 is not going to get you a rig with the ability to multi-track a drum set covered in mics. Not even close! You might get an interface with 8 channels for that much, but you have to factor in the cost of everything, including mics, cables, stands, monitors/headphones, software, etc... Considerations: Stereo Recording or Multi-Track Recording? Stereo Recording is recording two tracks: A left and right channel, which reflects most audio playback systems. This doesn't necessarily mean you are simply recording with two mics, it means that what your rig is recording onto your computer is a single stereo track. You could be recording a 5-piece band with 16 mics/channels, but if you're recording in stereo, all you're getting is a summation of those 16 tracks. This means that in your recording software, you won't be able to manipulate any of those channels independantly after you recorded them. If the rack tom mic wasn't turned up loud enough, or you want to mute the guitars, you can't do that, because all you have is a stereo track of everything. It's up to you to get your levels and balance and tone right before you hit record. If you are only using two mics or lines, then you will have individual control over each mic/line after recording. Commonly, you can find 2 input interfaces and use a sub-mixer taking the left/right outputs and pluging those into each channel of the interface. Some mixers will output a stereo pair into a computer as an interface, such as the Allen&Heath ZED16. If you want full control over every single input, you need to multi-track. Each mic or line that you are recording with will get it's own track in your DAW software, which you can edit and process after the fact. This gives you a lot of control over a recording, and opens up many mixing options, and also many more issues. Interfaces that facilitate multitracking include Presonus FireStudio, Focusrite Scarlett interfaces, etc. There are some mixers that are also interfaces, such as the Presonus StudioLive 16, but these are very expensive. There are core-card interfaces as well, these will plug in directly to your motherboard via PCI or PCI-Express slots. Protools HD is a core-card interface and requires more hardware than just the card to work. I would recommend steering clear of these until you have a firm grasp of signal chain and digital audio, as there are more affordable solutions that will yield similar results in a home-environment.

DAW - Digital Audio Workstation

I've talked a lot about theory, hardware, signal chain, etc... but we need a way to interpret this data. First off what does a DAW do? Some refer to them as DAE's (Digital Audio Editors). You could call it a virtual mixing board , however that isn't entirely correct. DAWs allow you to record, control, mix and manipulate independant audio signals. You can change their volume, add effects, splice and dice tracks, combine recorded audio with MIDI-generated audio, record MIDI tracks and much much more. In the old days, when studios were based around large consoles, the actual audio needed to be recorded onto some kind of medium - analog tape. The audio signals passed through the boards, and were printed onto the tape, and the tape decks were used to play back the audio, and any cutting, overdubbing etc. had to be done physically on the tape. With a DAW, your audio is converted into 1's and 0's through the converters on your interface when you record, and so computers and their harddiscs have largely taken the place of reel-to-reel machines and analog tape.
Here is a list of commonly used DAWs in alphabetical order: ACID Pro Apple Logic Cakewalk SONAR Digital Performer FL (Fruity Loops) Studio (only versions 8 and higher can actually record Audio I believe) GarageBand PreSonus Studio One Pro Tools REAPER Propellerhead Reason (version 6 has combined Reason and Record into one software, so it now is a full audio DAW. Earlier versions of Reason are MIDI based and don't record audio) Propellerhead Record (see above) Steinberg Cubase Steinberg Nuendo
There are of course many more, but these are the main contenders. [Note that not all DAWs actually have audio recording capabilities (All the ones I listed do, because this thread is about audio recording), because many of them are designed for applications like MIDI composing, looping, etc. Some are relatively new, others have been around for a while, and have undergone many updates and transformations. Most have different versions, that cater to different types of recording communities, such as home recording/consumer or professional.
That's a whole lot of choices. You have to do a lot of research to understand what each one offers, what limitations they may have etc... Logic, Garageband and Digital Performer for instance are Mac-only. ACID Pro, FL Studio and SONAR will only run on Windows machines. Garageband is free and is even pre-installed on every Mac computer. Most other DAWs cost something.
Reaper is a standout. A non-commercial license only costs $60. Other DAWs often come bundled with interfaces, such as ProTools MP with M-Audio interfaces, Steinberg Cubase LE with Lexicon Interfaces, Studio One with Presonus Interfaces etc. Reaper is a full function, professional, affordable DAW with a tremendous community behind it. It's my recommendation for everyone, and comes with a free trial. It is universally compatible and not hardware-bound.
You of course don't have to purchase a bundle. Your research might yield that a particular interface will suit your needs well, but the software that the same company offers or even bundles isn't that hot. As a consumer you have a plethora of software and hardware manufacturers competing for your business and there is no shortage of choice. One thing to think about though is compatability and customer support. With some exceptions, technically you can run most DAWs with most interfaces. But again, don't just assume this, do your research! Also, some DAWs will run smoother on certain interfaces, and might experience problems on others. It's not a bad thing to assume that if you purchase the software and hardware from the same company, they're at least somewhat optimized for eachother. In fact, ProTools, until recently would only run on Digidesign (now AVID) and M-Audio interfaces. While many folks didn't like being limited to their hardware choices to run ProTools, a lot of users didn't mind, because I think that at least in part it made ProTools run smoother for everyone, and if you did have a problem, you only had to call up one company. There are many documented cases where consumers with software and hardware from different companies get the runaround:
Software Company X: "It's a hardware issue, call Hardware Company Z". Hardware Company Z: "It's a software issue, call Software Company X".
Another thing to research is the different versions of softwares. Many of them have different versions at different pricepoints, such as entry-level or student versions all the way up to versions catering to the pros. Cheaper versions come with limitations, whether it be a maximum number of audio tracks you can run simultaneously, plug-ins available or supported Plug-In formats and lack of other features that the upper versions have. Some Pro versions might require you to run certain kinds of hardware. I don't have time nor the will to do research on individual DAW's, so if any of you want to make a comparison of different versions of a specific DAW, be my guest! In the end, like I keep stressing - we each have to do our own research.
A big thing about the DAW that it is important to note is this: Your signal chain is your DAW. It is the digital representation of that chain and it is important to understand it in order to properly use that DAW. It is how you route the signal from one spot to another, how you move it through a sidechain compressor or bus the drums into the main fader. It is a digital representation of a large-format recording console, and if you don't understand how the signal gets from the sound source to your monitor (speaker), you're going to have a bad time.

Playback - Monitors are not just for looking at!

I've mentioned monitors several times and wanted to touch on these quickly: Monitors are whatever you are using to listen to the sound. These can be headphones, powered speakers, unpowered speakers, etc. The key thing here is that they are accurate. You want a good depth of field, you want as wide a frequency response as you can get, and you want NEARFIELD monitors. Unless you are working with a space that can put the monitor 8' away from you, 6" is really the biggest speaker size you need. At that point, nearfield monitors will reproduce the audio frequency range faithfully for you. There are many options here, closed back headphones, open back headphones, studio monitors powered, and unpowered (require a separate poweramp to drive the monitor). For headphones, I recommend AKG K271, K872, Sennheiser HD280 Pro, etc. There are many options, but if mixing on headphones I recommend spending some good money on a set. For Powered Monitors, there's really only one choice I recommend: Kali Audio LP-6 monitors. They are, dollar for dollar, the best monitors you can buy for a home studio, period. These things contend with Genelecs and cost a quarter of the price. Yes, they still cost a bit, but if you're going to invest, invest wisely. I don't recommend unpowered monitors, as if you skimp on the poweramp they lose all the advantages you gain with monitors. Just get the powered monitors if you are opting for not headphones.

Drum Mic'ing Guide, I'm not going to re-create the wheel.


That's all for now, this has taken some time to put together (a couple hourse now). I can answer other questions as they pop up. I used a few sources for the information, most notably some well-put together sections on the Pearl Drummers Forum in the recording section. I know a couple of the users are no longer active there, but if you see this and think "Hey, he ripped me off!", you're right, and thanks for allowing me to rip you off!

A couple other tips that I've come across for home recording:
You need to manage your gain/levels when recording. Digital is NOT analog! What does this mean? You should be PEAKING (the loudest the signal gets) around -12dB to -15dB on your meters. Any hotter than that and you are overdriving your digital signal processors.
What sound level should my master bus be at for Youtube?
Bass Traps 101
Sound Proofing 101
submitted by M3lllvar to drums [link] [comments]

LCD Arduino + STONE HMI + Display Heart Rate

LCD Arduino project brief introduction

Some time ago, I found a heart rate sensor module MAX30100 in shopping online. This module can collect blood oxygen and heart rate data of users, which is also simple and convenient to use.
According to the data, I found that there are libraries of MAX30100 in the Arduino library files. That is to say, if I use the communication between LCD Arduino and MAX30100, I can directly call the Arduino library files without having to rewrite the driver files. This is a good thing, so I bought the module of MAX30100.
I decided to use Arduino to verify the heart rate and blood oxygen collection function of MAX30100. With STONE TFT LCD screen for monitoring blood pressure.

https://preview.redd.it/fbm2i8e32o251.jpg?width=328&format=pjpg&auto=webp&s=20329c7187f3fdf628106e923453fdf588fe69ab
Note: this module by default only with 3.3 V level MCU communications, because it defaults to using IIC pin pull up the resistance of 4.7 K to 1.8 V, so there is no communication with the Arduino by default, if you want to commune with the Arduino and need two 4.7 K of the IIC pin pull-up resistor connected to the VIN pin, these contents will be introduced in the back of the chapter.

Functional assignments

Before starting this project, I thought about some simple features:
• Heart rate data and blood oxygen data were collected
• Heart rate and blood oxygen data are displayed through an LCD screen
These are the only two features, but if we want to implement it, we need to do more thinking:
• What master MCU is used?
• What kind of LCD display?
As we mentioned earlier, we use Arduino for the MCU, but this is an LCD Arduino project, so we need to choose the appropriate LCD display module. I plan to use the LCD display screen with a serial port. I have a STONE STVI070WT-01 displayer here, but if Arduino needs to communicate with it, MAX3232 is needed to do the level conversion.
Then the basic electronic materials are determined as follows:
  1. Arduino Mini Pro development board
  2. MAX30100 heart rate and blood oxygen sensor module
  3. STONE STVI070WT-01 LCD serial port display module
  4. MAX3232 module

Hardware Introduction

MAX30100

The MAX30100 is an integrated pulse oximetry and heart rate monitor sensor solution. It combines two LEDs, a photodetector, optimized optics, and low-noise analog signal processing to detect pulse oximetry and heart-rate signals. The MAX30100 operates from 1.8V and 3.3V power supplies and can be powered down through software with negligible standby current, permitting the power supply to remain connected at all times.

Applications

● Wearable Devices
● Fitness Assistant Devices
● Medical Monitoring Devices

Benefits and Features

1、Complete Pulse Oximeter and Heart-Rate SensorSolution Simplifies Design
• Integrated LEDs, Photo Sensor, and high-Performance Analog Front -End
• Tiny 5.6mm x 2.8mm x 1.2mm 14-Pin OpticallyEnhanced System-in-Package
2、Ultra-Low-Power Operation Increases Battery Life for wearable Devices
• Programmable Sample Rate and LED Current for Power Savings
• Ultra-Low Shutdown Current (0.7µA, typ)
3、Advanced Functionality Improves Measurement Performance
• High SNR Provides Robust Motion Artifact Resilience
• Integrated Ambient Light Cancellation
• High Sample Rate Capability
• Fast Data Output Capability

Detection Principle


https://preview.redd.it/kgu72wk52o251.jpg?width=817&format=pjpg&auto=webp&s=0b44a5b4b476c50c1cbd311f048313777d06cabb
Just press your finger against the sensor to estimate pulse oxygen saturation (SpO2) and pulse (equivalent to heartbeat).
The pulse oximeter (oximeter) is a mini-spectrometer that USES the principles of different red cell absorption spectra to analyze the oxygen saturation of the blood. This real-time and rapid measurement method is also widely used in many clinical references.
I will not introduce the MAX30100 too much, because these materials are available on the Internet. Interested friends can look up the information of this heart rate test module on the Internet, and have a deeper understanding of its detection principle.

Introduction to the STVI070WT-01 displayer

In this project, I will use the STONE STVI070WT-01 to display the heart rate and blood oxygen data.
The driver chip has been integrated inside the display screen, and there is software for users to use. Users only need to add buttons, text boxes and other logic through the designed UI pictures, and then generate configuration files and download them into the display screen to run.
The display of STVI070WT-01 communicates with MCU through the UART RS232 signal, which means that we need to add a MAX3232 chip to convert the RS232 signal into a TTL signal so that we can communicate with Arduino MCU.

https://preview.redd.it/oacuof082o251.jpg?width=749&format=pjpg&auto=webp&s=d1427adf34689c8a433a2af71c494f7698e4baf8
If you are not sure how to use the MAX3232, please refer to the following pictures:

https://preview.redd.it/u39qtog92o251.jpg?width=653&format=pjpg&auto=webp&s=04cf458bcebcd27ba09f36903e20e7ebe1aaa6f9
If you think the level conversion is too troublesome, you can choose other types of displayers of STONE Tech, some of which can directly output uart-TTL signal.
The official website has detailed information and introduction:
https://www.stoneitech.com/
If you need video tutorials and tutorials to use, you can also find it on the official website.

Development steps

Three steps of STONE display screen development:
• Design the display logic and button logic with STONE TOOL software, and download the design file to the display module.
• MCU communicates with the STONE LCD display module through the serial port.
• With the data obtained in step 2, the MCU does other actions.

STONE TOOL software installation

Download the latest version of the STONE TOOL software (currently TOOL2019) from the website, and install it.
After the software is installed, the following interface will be opened:

https://preview.redd.it/ryc7qjkd2o251.jpg?width=848&format=pjpg&auto=webp&s=72f674b6a2b653562a31735f103aecf2df16199d
Click the "File" button in the upper left corner to create a new project, which we will discuss later.

LCD Arduino

Arduino is an open-source electronic prototype platform that is easy to use and easy to use. It includes the hardware part (various development boards that conform to the Arduino specification) and the software part (Arduino IDE and related development kits).
The hardware part (or development board) consists of a microcontroller (MCU), Flash memory (Flash), and a set of universal input/output interfaces (GPIO), which you can think of as a microcomputer motherboard.
The software part is mainly composed of Arduino IDE on PC, related board-level support package (BSP) and rich third-party function library. With the Arduino IDE, you can easily download the BSP associated with your development board and the libraries you need to write your programs.
Arduino is an open-source platform. So far, there have been many models and many derived controllers, including Arduino Uno, Arduino Nano, Arduino Yun and so on. In addition, the Arduino IDE now not only supports the Arduino series development boards but also adds support for popular development boards such as Intel Galileo and NodeMCU by introducing BSP.
Arduino senses the environment through a variety of sensors, controlling lights, motors and other devices to feedback and influence the environment. The microcontroller on the board can be programmed with an Arduino programming language, compiled into binaries, and burned into the microcontroller. Programming for Arduino is implemented with the Arduino programming language (based on Wiring) and the Arduino development environment (based on Processing). Arduino-based projects can contain Arduino only, as well as Arduino and other software running on PC, and they communicate with each other (such as Flash, Processing, MaxMSP).

HMI for Arduino serial display TFT LCD project development environment

The Arduino development environment is the Arduino IDE, which can be downloaded from the Internet.
Log into the official website of Arduino and download the software
https://www.arduino.cc/en/Main/Software?setlang=cn
After installing the Arduino IDE, the following interface will appear when you open the software:

https://preview.redd.it/2fcfnrkg2o251.jpg?width=567&format=pjpg&auto=webp&s=9b6664d15fb99c31ee91c49be56d9eb9e17e04de
The Arduino IDE creates two functions by default: the setup function and the loop function.
There are many Arduino introductions on the Internet. If you don't understand something, you can go to the Internet to find it.

LCD Arduino Project implementation process

hardware connection

To ensure that the next step in writing code goes smoothly, we must first determine the reliability of the hardware connection.
Only four pieces of hardware were used in this project:
  1. Arduino Mini pro development board
  2. STONE STVI070WT-01 tft-lcd display screen
  3. MAX30100 heart rate and blood oxygen sensor
  4. MAX3232 (rs232-> TTL)
The Arduino Mini Pro development board and STVI070WT tft-lcd display screen are connected through UART, which requires level conversion through MAX3232, and then the Arduino Mini Pro development board and MAX30100 module are connected through IIC interface.After thinking clearly, we can draw the following wiring picture:

https://preview.redd.it/xkpv7bxi2o251.jpg?width=769&format=pjpg&auto=webp&s=b3658c7c455ba97c6f3a961e34ed020059201b8b

https://preview.redd.it/zobnoatl2o251.jpg?width=1091&format=pjpg&auto=webp&s=2263d1d5a6d208b6e9c1110334971a1d34ed742c
Make sure there are no errors in the hardware connection and proceed to the next step.

STONE TFT LCD user interface design

First of all, we need to design a UI display image, which can be designed by PhotoShop or other image design tools. After designing the UI display image, save the image in JPG format.
Open the software STONE TOOL 2019 and create a new project:

https://preview.redd.it/ou27uc4o2o251.jpg?width=1004&format=pjpg&auto=webp&s=e559c55a3d4fb014fc35dd94bca4d7a52938c87f

https://preview.redd.it/j7mkexnp2o251.jpg?width=871&format=pjpg&auto=webp&s=eb80865fd5efe45a5b015790f0fd0c02f07ca069
Remove the image that was loaded by default in the new project, and add the UI image that we designed.
Add the text display component, design the display digit and decimal point, get the storage location of the text display component in the displayer.
The effect is as follows:

https://preview.redd.it/y7333lor2o251.jpg?width=1335&format=pjpg&auto=webp&s=501576a9d57e92b1435bc25406612a0f758038a5
Text display component address:
• Connection sta : 0x0008
• Heart rate : 0x0001
• Blood oxygen : 0x0005
The main contents of the UI interface are as follows:
• Connection status
• Heart rate display
• Blood oxygen showed

Generate configuration file

Once the UI design is complete, the configuration file can be generated and downloaded to the STVI070WT-01 displaye.

https://preview.redd.it/c94grplt2o251.jpg?width=606&format=pjpg&auto=webp&s=ab0a7306791341599fbb874c63638f1066e5f1d9
First, perform step 1, then insert the USB flash drive into the computer, and the disk symbol will be displayed. Then click "Download to u-disk" to Download the configuration file to the USB flash drive, and then insert the USB flash drive into STVI070WT-01 to complete the upgrade.

MAX30100

MAX30100 communicates via IIC. Its working principle is that the ADC value of heart rate can be obtained through infrared led irradiation. The MAX30100 register can be divided into five categories: state register, FIFO, control register, temperature register, and ID register. The temperature register reads the temperature value of the chip to correct the deviation caused by the temperature. The ID register can read the chip's ID number.

https://preview.redd.it/dfomjb1z2o251.jpg?width=848&format=pjpg&auto=webp&s=911b174be98448c64002c1a24fa6528ce56ae3b7
MAX30100 is connected with the Arduino Mini Pro development board through the IIC communication interface. Because there are ready-made MAX30100 library files in the Arduino IDE, we can read the heart rate and blood oxygen data without studying the registers of MAX30100.
For those who are interested in exploring the MAX30100 register, see the MAX30100 Datasheet.

Modify the MAX30100 IIC pull-up resistor

It should be noted that the 4.7k pull-up resistance of the IIC pin of MAX30100 module is connected to 1.8v, which is not a problem in theory. However, the communication logic level of the Arduino IIC pin is 5V, so it cannot communicate with Arduino without changing the hardware of the MAX30100 module.Direct communication is possible if the MCU is STM32 or another 3.3v logic level MCU.
Therefore, the following changes need to be made:

https://preview.redd.it/l5cimq013o251.jpg?width=521&format=pjpg&auto=webp&s=9fc29401ed402b9bf623c4f8e474336c8050fae8
Remove the three 4.7k resistors marked in the picture with an electric soldering iron. Then weld two resistors of 4.7k at the pins of SDA and SCL to VIN, so that we can communicate with Arduino.

Arduino serial display LCD

Open the Arduino IDE and find the following buttons:

https://preview.redd.it/w9mska373o251.jpg?width=853&format=pjpg&auto=webp&s=fe0ee068c64ce109028dab4f5898335ded02c82e
Search for "MAX30100" to find two libraries for MAX30100, then click download and install.

https://preview.redd.it/pqlihp9a3o251.jpg?width=933&format=pjpg&auto=webp&s=493965c54d1cc755a0dd2ac98ad6100cf7c93948
After the installation, you can find the Demo of MAX30100 in the LIB library folder of LCD Arduino:

https://preview.redd.it/srk2g83c3o251.jpg?width=911&format=pjpg&auto=webp&s=da696328a0a198c0ee41a17a7811024d36a153ea
Double-click the file to open it.

https://preview.redd.it/lc8z3gtd3o251.jpg?width=819&format=pjpg&auto=webp&s=bbac5eb529e4279792c899d738ebdb0fa9263c54
This Demo can be directly tested. If the hardware connection is ok, you can download the code compilation into the Arduibo development board and see the data of MAX30100 in the serial debugging tool.
The complete code is as follows:
/*
Arduino-MAX30100 oximetry / heart rate integrated sensor library
Copyright (C) 2016 OXullo Intersecans
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "MAX30100_PulseOximeter.h"
#define REPORTING_PERIOD_MS 1000
// PulseOximeter is the higher level interface to the sensor
// it offers:
// * beat detection reporting
// * heart rate calculation
// * SpO2 (oxidation level) calculation
PulseOximeter pox;
uint32_t tsLastReport = 0;
// Callback (registered below) fired when a pulse is detected
void onBeatDetected()
{
Serial.println("Beat!");
}
void setup()
{
Serial.begin(115200);
Serial.print("Initializing pulse oximeter..");
// Initialize the PulseOximeter instance
// Failures are generally due to an improper I2C wiring, missing power supply
// or wrong target chip
if (!pox.begin()) {
Serial.println("FAILED");
for(;;);
} else {
Serial.println("SUCCESS");
}
// The default current for the IR LED is 50mA and it could be changed
// by uncommenting the following line. Check MAX30100_Registers.h for all the
// available options.
// pox.setIRLedCurrent(MAX30100_LED_CURR_7_6MA);
// Register a callback for the beat detection
pox.setOnBeatDetectedCallback(onBeatDetected);
}
void loop()
{
// Make sure to call update as fast as possible
pox.update();
// Asynchronously dump heart rate and oxidation levels to the serial
// For both, a value of 0 means "invalid"
if (millis() - tsLastReport > REPORTING_PERIOD_MS) {
Serial.print("Heart rate:");
Serial.print(pox.getHeartRate());
Serial.print("bpm / SpO2:");
Serial.print(pox.getSpO2());
Serial.println("%");
tsLastReport = millis();
}
}


https://preview.redd.it/nyuyl4zl3o251.jpg?width=552&format=pjpg&auto=webp&s=58e05bc67a250de6f7b24060290d8a0703624e30
This code is very simple, I believe you can understand it at a glance. I have to say that the modular programming of Arduino is very convenient, and I don't even need to understand how the driver code of Uart and IIC is implemented.
Of course, the above code is an official Demo, and I still need to make some changes to display the data to STONE's displayer.

Display data to the STONE display through Arduino LCD

First, we need to get the address of the component that displays the heart rate and blood oxygen data in STONE's displayer:
In my project, the address is as follows:
Heart rate display component address: 0x0001
Address of blood oxygen display module: 0x0005
Sensor connection status address: 0x0008
If you need to change the display content in the corresponding space, you can change the display content by sending data to the corresponding address of the display screen through the serial port of Arduino.
The modified code is as follows:
/*
Arduino-MAX30100 oximetry / heart rate integrated sensor library
Copyright (C) 2016 OXullo Intersecans
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "MAX30100_PulseOximeter.h"
#define REPORTING_PERIOD_MS 1000
#define Heart_dis_addr 0x01
#define Sop2_dis_addr 0x05
#define connect_sta_addr 0x08
unsigned char heart_rate_send[8]= {0xA5, 0x5A, 0x05, 0x82,\
0x00, Heart_dis_addr, 0x00, 0x00};
unsigned char Sop2_send[8]= {0xA5, 0x5A, 0x05, 0x82, 0x00, \
Sop2_dis_addr, 0x00, 0x00};
unsigned char connect_sta_send[8]={0xA5, 0x5A, 0x05, 0x82, 0x00, \
connect_sta_addr,0x00, 0x00};
// PulseOximeter is the higher level interface to the sensor
// it offers:
// * beat detection reporting
// * heart rate calculation
// * SpO2 (oxidation level) calculation
PulseOximeter pox;
uint32_t tsLastReport = 0;
// Callback (registered below) fired when a pulse is detected
void onBeatDetected()
{
// Serial.println("Beat!");
}
void setup()
{
Serial.begin(115200);
// Serial.print("Initializing pulse oximeter..");
// Initialize the PulseOximeter instance
// Failures are generally due to an improper I2C wiring, missing power supply
// or wrong target chip
if (!pox.begin()) {
// Serial.println("FAILED");
// connect_sta_send[7]=0x00;
// Serial.write(connect_sta_send,8);
for(;;);
} else {
connect_sta_send[7]=0x01;
Serial.write(connect_sta_send,8);
// Serial.println("SUCCESS");
}
// The default current for the IR LED is 50mA and it could be changed
// by uncommenting the following line. Check MAX30100_Registers.h for all the
// available options.
pox.setIRLedCurrent(MAX30100_LED_CURR_7_6MA);
// Register a callback for the beat detection
pox.setOnBeatDetectedCallback(onBeatDetected);
}
void loop()
{
// Make sure to call update as fast as possible
pox.update();
// Asynchronously dump heart rate and oxidation levels to the serial
// For both, a value of 0 means "invalid"
if (millis() - tsLastReport > REPORTING_PERIOD_MS) {
// Serial.print("Heart rate:");
// Serial.print(pox.getHeartRate());
// Serial.print("bpm / SpO2:");
// Serial.print(pox.getSpO2());
// Serial.println("%");
heart_rate_send[7]=(uint32_t)pox.getHeartRate();
Serial.write(heart_rate_send,8);
Sop2_send[7]=pox.getSpO2();
Serial.write(Sop2_send,8);
tsLastReport = millis();
}
}

Compile the code, download it to the Arduino serial display LCD development board, and you're ready to start testing.
We can see that when the fingers leave the MAX30100, the heart rate and blood oxygen display 0. Place your finger on the MAX30100 collector to see your heart rate and blood oxygen levels in real-time.

LCD Arduino project effect can be seen in the following picture:


https://preview.redd.it/lf120a5s3o251.jpg?width=510&format=pjpg&auto=webp&s=d705a9e10bac1758afc554036a31748c5f73d255
submitted by woodkiki to ArduinoProjects [link] [comments]

Returning to PC from my 2011 macbook pro. Need a quiet, dark PC for software development, VMs, patientgaming

What will you be doing with this PC? Be as specific as possible, and include specific games or programs you will be using.
The main justification for building a new computer is to replace my dying MacBook Pro 2011 as a day-to-day computer, and to be able to do more at home software development. I'm at my computer most of the day so I'm willing to spend a bit for things that are going to save me time and frustration: thinking specifically about 32gb ram and NVMe here.
This PC is going to sit in my living room day and night, so it needs to be quiet and dark. Zero interest in any LEDs, RGB or glass panel cases. Because there's not a lot of space for it, I think Micro-ATX is the right size for me. I don't anticipate needing too many drive or PCI slots, and if I'm wrong about drives in a few years buying a larger case isn't that big of a deal.
I'll probably be running at least one VM eventually, not sure if I'm doing windows host with linux guest or linux host with windows guest, but I'd like to be able to have the guest itself be a decent development machine. I prefer Linux as a development environment but understand windows is better for gaming and more convenient or other things.
I'd also like to do some gaming of the /patientgamers type. I have no interest in online, competitive games or playing the latest and greatest. Some titles I'm looking to play soon are XCOM 2, Witcher 3, Terraria, Subnautica, Borderlands 3. Those games alone will probably take me 2-3 years to get through.
I'll probably also use this as a host for backups, e.g. photos, TimeMachine, and maybe run a plex server on it.
What is your maximum budget before rebates/shipping/taxes?
$1500, but I doubt I'd need to spend that much to meet my needs.
When do you plan on building/buying the PC? Note: beyond a week or two from today means any build you receive will be out of date when you want to buy.
Within a week or two then
What, exactly, do you need included in the budget? (ToweOS/monitokeyboard/mouse/etc)
Tower, WiFi whether by USB, PCI or on motherboard.
I'm doubtful that on-motherboard WiFi would be my best option: this PC sits at the opposite end of the apartment from WiFi and it's not easy to get it closer.
Which country (and state/province) will you be purchasing the parts in? If you're in US, do you have access to a Microcenter location?
USA, California. The closest Microcenter is 1.5 hours away, and given the pandemic situation I'm not willing to drive there except for a significant savings, e.g. >$300 off on the build.
If reusing any parts (including monitor(s)/keyboard/mouse/etc), what parts will you be reusing? Brands and models are appreciated.
Will you be overclocking? If yes, are you interested in overclocking right away, or down the line? CPU and/or GPU?
Definitely not day 1. Probably not down the road, especially if it's going to cost more in noise.
Are there any specific features or items you want/need in the build? (ex: SSD, large amount of storage or a RAID setup, CUDA or OpenCL support, etc)
What type of network connectivity do you need? (Wired and/or WiFi) If WiFi is needed and you would like to find the fastest match for your wireless router, please list any specifics.
Do you have any specific case preferences (Size like ITX/microATX/mid-towefull-tower, styles, colors, window or not, LED lighting, etc), or a particular color theme preference for the components?
Do you need a copy of Windows included in the budget? If you do need one included, do you have a preference?
Extra info or particulars:
I've talked to a knowledgeable friend and the settled on the following components around the core of the build, but I'm open to other opinions too
I don't mind upgrading components if needed over the next 3-5 years but don't want to have to do a brand new build before 5 years.
Many thanks!
submitted by squat_whisperer to buildapcforme [link] [comments]

MAME 0.217

MAME 0.217

What better way to celebrate Christmas than with a new MAME release? That’s right – MAME 0.217 is scheduled for release today. Just a reminder, this will be the last MAME release that we distribute a pre-built 32-bit Windows binary package for. Compiling for 32-bit targets will still be supported, but you’ll have to build MAME releases yourself starting from next month. This will also be the last release with source code distributed in the “zip in zip” archive format. We recommend getting source code by cloning a tagged revision from one of our version control mirrors (GitHub, GitLab or SourceForge), or you can use the P7ZIP tools to extract the self-extracting 7-Zip source archive. For MAME 0.217, we’ve switched the Windows tool chain to GCC 9.2.0, and uploaded an updated tools package (the minimum supported GCC version has not changed).
With all the housekeeping announcements out of the way, we can get to those juicy updates. The most exciting thing this month is the recovery of the Sega Model 1 coprocessor TGP programs for Star Wars Arcade and Wing War, making these games fully playable. We’ve been working on Virtua Fighter as well, and while the graphics are greatly improved, there are still some gameplay issues as of this release. In other arcade emulation news, sasuke has been busy fixing long-standing graphical issues in Nichibutsu games, and AJR has made some nice improvements to the early SNK 6502-based games.
On the home system side, there are some nice Sam Coupé improvements from TwistedTom, support for Apple II paddle controllers, a better Apple II colour palette, and significant improvements to Acorn RiscPC emulation. TV game emulation is progressing steadily, with two Lexibook systems, the Jungle Soft Zone 40, and the MiWi 16-in-1 now working.
For front-end developers, we’ve added data to the XML list format allowing you to handle software lists enabled by slot card devices (there are a few of these for Acorn and Sinclair home computers). The minimaws sample script has been updated to demonstrate a number of tasks related to handling software lists. For MAME contributors, we’ve made save state registration a bit simpler, and more manageable in the debugger.
You can get the source and Windows binary packages from the download page.

MAMETesters Bugs Fixed

New working machines

New working clones

Machines promoted to working

Clones promoted to working

New machines marked as NOT_WORKING

New clones marked as NOT_WORKING

New working software list additions

Software list items promoted to working

New NOT_WORKING software list additions

Source Changes

submitted by cuavas to emulation [link] [comments]

MAME 0.217

MAME 0.217

What better way to celebrate Christmas than with a new MAME release? That’s right – MAME 0.217 is scheduled for release today. Just a reminder, this will be the last MAME release that we distribute a pre-built 32-bit Windows binary package for. Compiling for 32-bit targets will still be supported, but you’ll have to build MAME releases yourself starting from next month. This will also be the last release with source code distributed in the “zip in zip” archive format. We recommend getting source code by cloning a tagged revision from one of our version control mirrors (GitHub, GitLab or SourceForge), or you can use the P7ZIP tools to extract the self-extracting 7-Zip source archive. For MAME 0.217, we’ve switched the Windows tool chain to GCC 9.2.0, and uploaded an updated tools package (the minimum supported GCC version has not changed).
With all the housekeeping announcements out of the way, we can get to those juicy updates. The most exciting thing this month is the recovery of the Sega Model 1 coprocessor TGP programs for Star Wars Arcade and Wing War, making these games fully playable. We’ve been working on Virtua Fighter as well, and while the graphics are greatly improved, there are still some gameplay issues as of this release. In other arcade emulation news, sasuke has been busy fixing long-standing graphical issues in Nichibutsu games, and AJR has made some nice improvements to the early SNK 6502-based games.
On the home system side, there are some nice Sam Coupé improvements from TwistedTom, support for Apple II paddle controllers, a better Apple II colour palette, and significant improvements to Acorn RiscPC emulation. TV game emulation is progressing steadily, with two Lexibook systems, the Jungle Soft Zone 40, and the MiWi 16-in-1 now working.
For front-end developers, we’ve added data to the XML list format allowing you to handle software lists enabled by slot card devices (there are a few of these for Acorn and Sinclair home computers). The minimaws sample script has been updated to demonstrate a number of tasks related to handling software lists. For MAME contributors, we’ve made save state registration a bit simpler, and more manageable in the debugger.
You can get the source and Windows binary packages from the download page.

MAMETesters Bugs Fixed

New working machines

New working clones

Machines promoted to working

Clones promoted to working

New machines marked as NOT_WORKING

New clones marked as NOT_WORKING

New working software list additions

Software list items promoted to working

New NOT_WORKING software list additions

Source Changes

submitted by cuavas to MAME [link] [comments]

Forex And Binary fxxtools Pro -2020 Technical Analysis Trading Robot With Live Signal New Premium Binary Trading Tutorial - with PT PRO Indicator, Trading day 219 FXX Tool pro 1.4.2 free download Binary options signal software Super work strategy pro signal  best method for beginner  iq option 2020 super big profit - trading with pro signals - 99.9% win ratio - iq option strategy 2020

Binary Options Pro Signals delivers binary option trading signals by email or SMS. It offers signals during either the New York or European trading session for 14 highly liquid and tradable assets BOPS trading signals are the easiest way to make even the newest Binary Options Trader Successful! 72.5% Accurate Signals We have been sending signals since March 20 1 1 with a 72.5% accuracy for more than 4 years of live historical trading. Binary Options Pro Signals is a program that is an extension of another Binary Options Signals product, but it differs from the latter by the supply of assets, since in addition to stocks it has other assets in spite of being products manufactured by the same trading company. What Is Binary Options Pro Signals?. Binary Options Pro Signals is a fully automated trading system that claims it can accurately predict trading signals and earn users thousands of dollars within just minutes of activating their account. There is a 14-day trial offered for this system, however, you will be charged $14. After this time, should you continue to use the service, you will be Binary Signals and Auto Trading Software. Binary signals pro for trading options only alert the user to the situation on the market and give recommendations for action, while robots can execute transactions on behalf of the user and from his account. However, this does not mean that binary robots will thoughtlessly merge all your money, until

[index] [8042] [14492] [3629] [13396] [4538] [8719] [15148] [7355] [11352] [1021]

Forex And Binary fxxtools Pro -2020 Technical Analysis Trading Robot With Live Signal

Super work strategy pro signal best method for beginner iq option 2020 ... Forex Method,Forex Signals,Binary Options Strategy,Binary Options Method,Binary Options Signals,Binary Options Tricks ... The binary options trade signals from Saturn PRO are still on fire. We are now on our 16th day of positive trading wins, with our worse da... Binary Options Trading Signals uploaded a video 6 ... iq option robot cross signal binary options pro signals free binary options signals software binary options robot usa z force signal software fxx tools signal trading download fxxtool master pro ... Hi friends, 'FXX tool pro' is a high accuracy signal software. In this video I have shown you about, " How to place perfect trades in binary options using FXX tool pro''. iq option, binary options, binary option, iq option strategy, binary options trading, iq option robot, binary option strategy, binary options robot, binary trading, iqoption, bot, binary, iq ...